* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
sum(0()) -> 0()
sum(s(x)) -> +(sum(x),s(x))
sum1(0()) -> 0()
sum1(s(x)) -> s(+(sum1(x),+(x,x)))
- Signature:
{sum/1,sum1/1} / {+/2,0/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s}
+ Applied Processor:
DependencyPairs {dpKind_ = WIDP}
+ Details:
We add the following weak innermost dependency pairs:
Strict DPs
sum#(0()) -> c_1()
sum#(s(x)) -> c_2(sum#(x))
sum1#(0()) -> c_3()
sum1#(s(x)) -> c_4(sum1#(x))
Weak DPs
and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(0()) -> c_1()
sum#(s(x)) -> c_2(sum#(x))
sum1#(0()) -> c_3()
sum1#(s(x)) -> c_4(sum1#(x))
- Strict TRS:
sum(0()) -> 0()
sum(s(x)) -> +(sum(x),s(x))
sum1(0()) -> 0()
sum1(s(x)) -> s(+(sum1(x),+(x,x)))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
sum#(0()) -> c_1()
sum#(s(x)) -> c_2(sum#(x))
sum1#(0()) -> c_3()
sum1#(s(x)) -> c_4(sum1#(x))
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(0()) -> c_1()
sum#(s(x)) -> c_2(sum#(x))
sum1#(0()) -> c_3()
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
+ Details:
We estimate the number of application of
{1,3}
by application of
Pre({1,3}) = {2,4}.
Here rules are labelled as follows:
1: sum#(0()) -> c_1()
2: sum#(s(x)) -> c_2(sum#(x))
3: sum1#(0()) -> c_3()
4: sum1#(s(x)) -> c_4(sum1#(x))
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(s(x)) -> c_2(sum#(x))
sum1#(s(x)) -> c_4(sum1#(x))
- Weak DPs:
sum#(0()) -> c_1()
sum1#(0()) -> c_3()
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:sum#(s(x)) -> c_2(sum#(x))
-->_1 sum#(0()) -> c_1():3
-->_1 sum#(s(x)) -> c_2(sum#(x)):1
2:S:sum1#(s(x)) -> c_4(sum1#(x))
-->_1 sum1#(0()) -> c_3():4
-->_1 sum1#(s(x)) -> c_4(sum1#(x)):2
3:W:sum#(0()) -> c_1()
4:W:sum1#(0()) -> c_3()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
4: sum1#(0()) -> c_3()
3: sum#(0()) -> c_1()
* Step 5: Decompose WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(s(x)) -> c_2(sum#(x))
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
+ Details:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
- Strict DPs:
sum#(s(x)) -> c_2(sum#(x))
- Weak DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
Problem (S)
- Strict DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Weak DPs:
sum#(s(x)) -> c_2(sum#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
** Step 5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(s(x)) -> c_2(sum#(x))
- Weak DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:sum#(s(x)) -> c_2(sum#(x))
-->_1 sum#(s(x)) -> c_2(sum#(x)):1
2:W:sum1#(s(x)) -> c_4(sum1#(x))
-->_1 sum1#(s(x)) -> c_4(sum1#(x)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: sum1#(s(x)) -> c_4(sum1#(x))
** Step 5.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(s(x)) -> c_2(sum#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: sum#(s(x)) -> c_2(sum#(x))
The strictly oriented rules are moved into the weak component.
*** Step 5.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum#(s(x)) -> c_2(sum#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1}
Following symbols are considered usable:
{sum#,sum1#}
TcT has computed the following interpretation:
p(+) = [1] x1 + [1] x2 + [0]
p(0) = [2]
p(s) = [1] x1 + [8]
p(sum) = [1]
p(sum1) = [4] x1 + [4]
p(sum#) = [2] x1 + [0]
p(sum1#) = [2] x1 + [1]
p(c_1) = [1]
p(c_2) = [1] x1 + [0]
p(c_3) = [0]
p(c_4) = [1]
Following rules are strictly oriented:
sum#(s(x)) = [2] x + [16]
> [2] x + [0]
= c_2(sum#(x))
Following rules are (at-least) weakly oriented:
*** Step 5.a:2.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
sum#(s(x)) -> c_2(sum#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
*** Step 5.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
sum#(s(x)) -> c_2(sum#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:sum#(s(x)) -> c_2(sum#(x))
-->_1 sum#(s(x)) -> c_2(sum#(x)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: sum#(s(x)) -> c_2(sum#(x))
*** Step 5.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Weak DPs:
sum#(s(x)) -> c_2(sum#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:sum1#(s(x)) -> c_4(sum1#(x))
-->_1 sum1#(s(x)) -> c_4(sum1#(x)):1
2:W:sum#(s(x)) -> c_2(sum#(x))
-->_1 sum#(s(x)) -> c_2(sum#(x)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: sum#(s(x)) -> c_2(sum#(x))
** Step 5.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: sum1#(s(x)) -> c_4(sum1#(x))
The strictly oriented rules are moved into the weak component.
*** Step 5.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_4) = {1}
Following symbols are considered usable:
{sum#,sum1#}
TcT has computed the following interpretation:
p(+) = [0]
p(0) = [2]
p(s) = [1] x1 + [4]
p(sum) = [8] x1 + [0]
p(sum1) = [1] x1 + [1]
p(sum#) = [0]
p(sum1#) = [4] x1 + [0]
p(c_1) = [0]
p(c_2) = [2] x1 + [1]
p(c_3) = [1]
p(c_4) = [1] x1 + [12]
Following rules are strictly oriented:
sum1#(s(x)) = [4] x + [16]
> [4] x + [12]
= c_4(sum1#(x))
Following rules are (at-least) weakly oriented:
*** Step 5.b:2.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
*** Step 5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
sum1#(s(x)) -> c_4(sum1#(x))
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:sum1#(s(x)) -> c_4(sum1#(x))
-->_1 sum1#(s(x)) -> c_4(sum1#(x)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: sum1#(s(x)) -> c_4(sum1#(x))
*** Step 5.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Signature:
{sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(n^1))